Types of HVG metrics are specified in 02_norm_clustering.yaml and 01_integration.yaml configs.
See the corresponding section there.
Arguments
- sce_norm
A
SingleCellExperimentobject with computed HVG metric.- hvg_metric_fit
A
DataFramewith HVG metric fit as produced by e.g.scran::modelGeneVar().- hvg_selection_value
A numeric scalar: threshold value to select HVGs. This depends on
hvg_metric.- hvg_metric
A character scalar: type of HVG metric. If
sctransformis used, HVGs are selected by the underlying method, and number of them is controlled bySCT_N_HVGparameter in02_norm_clustering.yaml. For the other metric types, see thehvg_selectionandhvg_selection_valueparameters.- hvg_selection
A character scalar: method to use for selection of HVGs. This is only relevant when
hvg_metricis"gene_var"or"gene_cv2". See https://bioconductor.org/books/3.15/OSCA.basic/feature-selection.html#hvg-selection and https://bioconductor.org/books/3.15/OSCA.advanced/more-hvgs.html#more-hvg-selection-strategies for more details."top": Take top X genes according to a metric."bio"and"ratio"columns are used forhvg_metric"gene_var"and"gene_cv2", respectively."significance": Use FDR threshold."threshold": Use threshold on the minimum value of a metric."bio"and"ratio"columns are used forhvg_metricof"gene_var"and"gene_cv2", respectively.