Function reference
-
SCDRAKE_CLI_VERSION
- Matching CLI version for this package version.
-
install_cli()
check_cli()
- Install or check the command line interface scripts.
-
init_project()
- Initialize a new
scdrake
project.
-
update_project()
- Update
scdrake
project files.
-
load_config()
load_pipeline_config()
load_single_sample_configs()
load_integration_configs()
- Load a YAML config file as
scdrake_list
.
-
update_config()
update_pipeline_config()
update_single_sample_configs()
update_integration_configs()
update_configs()
- Update a local YAML config file using a default one.
-
scdrake_list()
`$`(<scdrake_list>)
`[`(<scdrake_list>)
`[[`(<scdrake_list>)
- A
scdrake
's list with overloaded, strict access operators.
yq tool
Functions related to the yq tool.
-
check_yq()
- Check the availability and version of the
yq
tool.
-
download_yq()
- Download the binary of the
yq
tool (version 3.4.1).
-
get_yq_default_path()
- Return a default download path for the
yq
tool's binary.
-
yq_merge_cmd()
- Merge two YAML files using the
yq
tool.
-
run_single_sample()
run_integration()
run_single_sample_r()
run_integration_r()
- Run the
scdrake
pipeline.
-
create_single_sample_dirs()
create_integration_dirs()
- Create a basic directory structure based on paths in config.
-
scdrake_make()
scdrake_r_make()
- Execute a
scdrake
's pipeline plan.
-
check_pandoc()
- Check for
pandoc
's binary.
-
check_pkg_installed()
check_qs_installed()
check_future_installed()
check_clustermq_installed()
check_future.callr_installed()
check_sc3_version()
check_scdrake_packages()
- Check if a package is installed and display an informative message.
-
check_scdrake()
- Check for selected
scdrake
dependencies.
-
get_single_sample_plan()
get_integration_plan()
- Get a
drake
plan for a specific analysis type.
-
get_dimred_plots_other_vars_subplan()
- Get a subplan for dimensionality reduction plots of selected variables.
-
get_common_subplan()
get_cluster_markers_subplan()
get_contrasts_subplan()
- Get a
drake
subplan common to all pipelines.
-
get_clustering_graph_subplan()
- Get a subplan for graph-based clustering.
-
get_clustering_kmeans_subplan()
- Get a subplan for k-means clustering.
-
get_clustering_sc3_subplan()
- Get a subplan for SC3 clustering.
-
get_clustering_subplan()
- Get subplan for clustering.
-
get_cell_annotation_subplan()
- Get a subplan for cell annotation via
SingleR
-
get_input_qc_subplan()
get_norm_clustering_subplan()
- Get a
drake
plan for a stage of single-sample pipeline.
-
get_integration_subplan()
get_int_clustering_subplan()
- Get a
drake
plan for a stage of integration pipeline.
-
load_custom_plan()
- Source a file returning a custom drake plan.
-
download_pbmc1k()
download_pbmc3k()
- Download PBMC example data from 10x Genomics.
-
get_scdrake_default_options()
get_scdrake_options()
- Options used by
scdrake
.
Target-related functions
Those functions are mostly used for individual targets within pipeline plans. They are usually named as <target_name>_fn()
.
-
empty_droplets_fn()
- Calculate empty droplet statistics for each cell.
-
get_gene_filter()
- Get a logical filter for genes not passing a ratio of cells expressing a gene and a minimum number of UMI per gene.
-
get_used_qc_filters_operator_desc()
- Return an informative message about the used operator to join cell QC filters
-
sce_final_input_qc_fn()
- Finalize a
SingleCellExperiment
object which will proceed to the02_norm_clustering
stage.
-
sce_history_fn()
- Create a tibble with history of cell and gene filtering.
-
sce_history_plot_fn()
- Plot history of cell and gene filtering.
-
sce_raw_fn()
- Import scRNA-seq data.
-
sce_selected_fn()
- Select a
SingleCellExperiment
object which will proceed to the02_norm_clustering
stage.
-
sce_valid_cells_fn()
- Subset cells in a
SingleCellExperiment
object to non-empty ones and add corresponding statistics.
-
cc_genes_fn()
- Get dataframe of cell cycle genes.
-
pca_phase_plots_fn()
- Make dimred plots of PCA colored by cell cycle phase.
-
sce_cc_fn()
- Assign cell cycle phase to cells.
-
sce_norm_fn()
scran_normalization()
sctransform_normalization()
- Normalize counts either by
scran
orsctransform
.
-
sce_norm_hvg_fn()
- Find highly variable genes (HVGs).
-
sce_rm_doublets_fn()
- Remove cell doublets from a
SingleCellExperiment
object.
-
selected_markers_plots_fn()
- Make a grid of feature plots for selected genes.
-
get_int_method_description()
- Return description for an integration method.
-
hvg_int_list_fn()
- Get a named list of HVG data (gene IDs, fit, metadata).
-
hvg_plot_int_fn()
- Make a HVG plot for uncorrected
SingleCellExperiment
object (processed bybatchelor::multiBatchNorm()
).
-
int_diagnostics_df_fn()
- Compute and make integration diagnostics and plots for each integration method.
-
integration_methods_df_fn()
- Make a tibble with integration methods and their parameters.
-
sce_int_clustering_df_fn()
- Compute a quick graph-based clustering for each integration method.
-
sce_int_combine_hvgs()
- Combine HVG data from a list of
SingleCellExperiment
objects.
-
sce_int_df_fn()
- Perform integration of single-samples.
-
sce_int_dimred_df_fn()
- Calculate t-SNE and UMAP for each integration method result (
SingleCellExperiment
object).
-
sce_int_dimred_plots_df_fn()
- Make dimred plot for each combination of integration method, dimred method, and coloring by batch (single-sample) and cell cycle phase.
-
sce_int_import_fn()
- Import
sce_final_norm_clustering
targets fromdrake
caches.
-
sce_int_pca_df_fn()
- Compute PCA for each integration method result (
SingleCellExperiment
object).
-
sce_int_processed_fn()
- Subset each object in a list of
SingleCellExperiment
objects to common data and their corresponding metadata (e.g. HVGs).
-
sce_int_raw_snn_clustering_fn()
- Perform a fast shared nearest neighbor clustering of each sample.
-
selected_markers_int_df_fn()
- Prepare parameters for expression plots of selected markers.
-
selected_markers_int_plots_df_fn()
- Make expression plots of selected markers.
-
collapse_ensembl_multivals()
- Collapse a character vector by
","
.
-
make_gene_annotation()
- Create a
dataframe
with annotation of SCE object's genes using anAnnotationDbi
package.
-
with_dbi()
- Load a SQL database file and run a function from the
AnnotationDbi
package.
-
cell_annotation_diagnostic_plots_files_fn()
- Save cell annotation diagnostic plots to PDF files.
-
cell_annotation_diagnostic_plots_fn()
- Generate diagnostic plots for cell annotation.
-
cell_annotation_fn()
- Perform cell annotation via
SingleR::SingleR()
.
-
cell_annotation_labels_fn()
- Create a named list of cell labels returned from
SingleR::SingleR()
.
-
cell_annotation_params_fn()
- Load a list of cell annotation references into a
tibble
.
-
calculate_metadata()
- Calculate metadata for manual cell/spot annotation for heatmap visualisation.
-
create_signature_matrix_fn()
- Create signature matrix from provided file containing names with markers.
-
meta_heatmap_ploting()
- Manual annotation heatmap plotting
-
run_page_man_annotation()
- Calculate and run PAGE annotation.
-
cluster_markers_fn()
- Add LFC summaries for Wilcox tests, obtained from t-test results.
-
cluster_markers_heatmaps_df_fn()
- Create a final
tibble
holding parameters for cluster markers heatmaps generation.
-
cluster_markers_out_fn()
- Create a final
dataframe
of cluster markers.
-
cluster_markers_test_params_fn()
cluster_markers_plot_params_fn()
cluster_markers_heatmap_params_fn()
- Extract columns with certain parameters from cluster markers sources
tibble
.
-
cluster_markers_params_fn()
- Load a list of cluster markers sources into a
tibble
.
-
cluster_markers_processed_fn()
- Add additional summary columns of cluster markers for comparisons with other group levels.
-
calc_sc3()
- Run SC3 clustering for a specific
k
.
-
cells_per_cluster_table()
cells_per_cluster_table()
- Get a frequency table of cell-cluster assignments.
-
cluster_sc3_cluster_stability_plots_file_fn()
- Save SC3 cluster stability plots to a single PDF.
-
cluster_sc3_df_fn()
- Create a dataframe of SC3 clusters for a selected number of clusters.
-
get_pca_gene_var_pcs()
- Get a number of PCs corresponding to biological variation.
-
get_pca_selected_pcs()
- Get a final selection of number of PCs.
-
graph_snn_fn()
- Compute shared nearest neighbors (SNN) graph.
-
make_kmeans_gaps_plot()
- Make a plot of k-means gaps.
-
make_pca_selected_pcs_plot()
- Make a plot showing numbers of selected PCs from all strategies.
-
run_graph_based_clustering()
- Find clusters in SNN graph using a community detection algorithm and if possible, using a specified resolution.
-
run_kmeans_clustering()
- Run k-means clustering for a specific
k
.
-
sce_calc_pca()
- Calculate PCA of a
SingleCellExperiment
object.
-
sce_compute_dimreds()
- Compute t-SNE and UMAP dimreds on a
SingleCellExperiment
object.
-
contrasts_fn()
- Extract contrast statistics from cluster markers tests.
-
contrasts_heatmaps_df_fn()
- Create a
tibble
holding contrast results and heatmap parameters.
-
contrasts_out_fn()
- Format a
tibble
with contrast results.
-
contrasts_params_fn()
contrasts_heatmap_params_fn()
contrasts_plot_params_fn()
- Prepare a
tibble
with parameters for contrasts tests.
-
get_top_hvgs()
- Get top N highly variable genes (HVGs) by a specified metric.
-
plot_hvg()
- Plot average expression vs. HVG metrics (total, bio, and technical variance) and highlight HVGs.
-
plot_hvg_fit()
- Plot fit of a HVG metric and highlight HVGs.
-
sce_get_cc_genes()
- Identify cell cycle-related genes by using variance explained threshold.
-
sce_remove_cc_genes()
- Remove cell cycle-related genes from HVGs.
-
add_marker_table_links()
- Convert specified columns of a marker table to HTML links.
-
filter_markers()
- Filter a dataframe with cluster markers.
-
generate_markers_results_section()
- Generate a table with links to marker results.
-
marker_heatmap()
- Make a heatmap of cell clusters.
-
marker_heatmaps_wrapper()
- Make a heatmap of global or contrast markers.
-
marker_plot()
- Make a marker plot.
-
markers_dimred_plots()
- Make dimred plots for each marker source defined in
CLUSTER_MARKERS_SOURCES
(cluster_markers.yaml
config) orCONTRASTS_SOURCES
(contrasts.yaml
config).
-
markers_dimred_plots_files()
- Save dimred plots.
-
markers_for_tables()
- Make a table used in HTML report of marker results.
-
markers_plots_files()
- Make plots of top markers.
-
markers_plots_top()
- Get a tibble of top markers extracted from each test result.
-
markers_table_files()
- Prepare a table with markers and render a HTML report from RMarkdown template.
-
scran_markers()
- Compute cell cluster markers.
-
additional_cell_data_fn()
- Load additional cell data from a CSV or Rds (dataframe) file.
-
as_seurat()
- Convert a
SingleCellExperiment
toSeurat
object.
-
make_cell_groupings()
- Create new cell groups based on existing ones.
-
cell_data_fn()
- Merge all cell-related data to a single DataFrame.
-
cells_per_cluster_table()
cells_per_cluster_table()
- Get a frequency table of cell-cluster assignments.
-
create_seu_for_heatmaps()
- Create a
Seurat
object used for heatmap generation.
-
merge_sce_metadata()
- Merge
metadata()
of multipleSingleCellExperiment
object.
-
sce_add_cell_data()
- Add columns to
colData()
of aSingleCellExperiment
object.
-
sce_add_colData()
- Append new columns to
colData
of aSingleCellExperiment
object.
-
sce_add_metadata()
- Append data to
metadata()
list of aSingleCellExperiment
object.
-
seu_add_metadata()
- Append data to metadata o a
Seurat
object's assay.
-
which_genes_regex()
- Get indices of genes whose annotation matches a regex.
-
sce_add_spatial_colData()
- Append new columns with spatial relevance to
colData
of aSingleCellExperiment
object.
-
dimred_plots_cell_annotation_params_df_fn()
- Make a tibble with parameters for dimred plots of cell annotation labels.
-
dimred_plots_clustering_fn()
- Make a dimred plot for each clustering and dimred method.
-
dimred_plots_clustering_united_files_fn()
- Put clustering dimred plots for different parameters (resolution,
k
) into a single PDF.
-
dimred_plots_from_params_df()
- Make dimred plots of selected variables.
-
dimred_plots_other_vars_params_df_fn()
- Make a tibble with parameters for dimred plots of selected variables.
-
highlight_points()
- Highlight points belonging to certain levels.
-
plotReducedDim_mod()
- A wrapper around
scater::plotReducedDim()
.
-
plot_clustree()
- Plot clustering tree.
-
plot_colData()
- A wrapper for
scater::plotColData()
.
-
plot_vln()
- Make a combined violin-boxplot plot.
-
save_clustree()
- Save a clustree plot into PDF.
-
save_selected_markers_plots_files()
- Save plots of selected markers.
-
selected_markers_dimplot()
- Make a grid of feature plots for selected markers.
-
getDistinctColors()
- A helper function for asigning colors in pseudotissue visualization
-
plot_spat_point_layer_ggplot()
- A function for pseudotissue visualization
-
plot_spat_visuals()
- A function for visualization selected qc matrices in pseudotissue visualization
-
spatGenePlot2Dsce()
- A function for visualization selected genes in pseudotissue visualization
-
visualized_spots()
- A basic function for pseudotissue visualization
-
cells_per_cluster_table_collapsed_html()
- Print a HTML of table collapsible by button.
-
format_used_functions()
- Use the downlit package to generate a Markdown list of autolinked functions wrapped inside
<details>
tags.
-
generate_cell_annotation_plots_section()
- Generate a section with dimred plots used in some RMarkdown files.
-
generate_dimred_plots_clustering_section()
- Generate a section of clustering dimensionality reduction plots in an RMarkdown document.
-
generate_dimred_plots_section()
- Generate a section with dimred plots used in some RMarkdown files.
-
generate_stage_report()
- Render RMarkdown document for a stage of the pipeline.
-
create_a_link()
create_img_link()
- Generate a HTML link as
<a></a>
or in the form of image as<a><img /></a>
.
-
md_header()
- Generate a Markdown header.
-
render_bootstrap_table()
- Render a dataframe-like object using
knitr::kable()
andkableExtra::kable_styling()
.
-
format_shell_command()
wrap_code()
format_shell_commands()
- Format a shell command as a Markdown codeblock.
-
get_random_strings()
- Generate random strings compounded from alphabetical characters by default.
-
str_comma()
str_line()
str_space()
- Various utils for joining of text.
-
add_item_to_list()
- Add named item (including
NULL
) to a list.
-
assert_that_()
- A wrapper around
assertthat::assert_that()
.
-
create_dummy_plot()
- Create a blank
ggplot
with label.
-
filter_nulls()
- Return list with removed
NULL
elements.
-
get_sys_env()
- Read an environment variable and if needed, assign a default value.
-
get_tmp_dir()
- Get a path to the temporary directory according to the OS.
-
`%&&%`
- A short-circuit evaluation-like function similar to
bash
's&&
operator.
-
lapply_rows()
- Apply a function over rows of a
data.frame
-like object and concatenate the results back totibble
ordata.frame
.
-
list_names_to_values()
- Append names of a list of lists as values in each sublist.
-
lists_to_tibble()
- Convert list of lists to tibble.
-
na_empty()
- Return
NA
if an object is empty.
-
replace_list_nas_with_nulls()
- Replace
NA
s in a list byNULL
s.
-
replace_list_nulls()
- Replace
NULL
items in a defined depth of a list.
-
save_pdf()
- Save a list of plots to multipage PDF.
-
save_print()
save_object_info()
- Capture output from
print()
of an object.
-
set_rstudio_drake_cache()
- Set
rstudio_drake_cache
option.
-
with_plan()
- Locally change a
future
plan.
-
.apply_config_patches()
- Apply YAML config patches to package-bundled configs.
-
.check_integration_methods()
- Check for valid
INTEGRATION_SOURCES
parameter.
-
.check_marker_sources()
- Check for correct structure of
CLUSTER_MARKERS_SOURCES
orCONTRASTS_SOURCES
.
-
.get_dict_param()
- Unlist a list of length one containing a named list.
-
.hereize_paths()
- Using the
here
package, contruct paths relative to project's root directory.
-
.load_config_group()
- Load a group of YAML config files.
-
.load_configs()
- Load a list of YAML config files.
-
.paths_to_base_dir()
- Construct paths relative to base directory.
-
.update_configs_recursive()
- Recursively update local configs using a file glob
*.default.yaml
.
-
.prepare_marker_source_params()
.prepare_marker_sources_params()
- Prepare a
tibble
with parameters for cluster marker tests.
-
.process_pipeline_config()
.process_main_config()
.process_cluster_markers_config()
.process_contrasts_config()
.prepare_cell_annotation_sources_params()
.process_integration_config()
.process_int_clustering_config()
.process_input_qc_config()
.process_norm_clustering_config()
- Config processing.
-
update_config_group
- Update a group of configs, i.e. pipeline, single-sample, or integration.