Normalize counts either by scran
or sctransform
.
Source: R/single_sample_norm_clustering.R
sce_norm.Rd
Normalize counts either by scran
or sctransform
.
Usage
sce_norm_fn(sce_cc, norm_type = c("scran", "sctransform", "none"), ...)
scran_normalization(
sce,
use_quickcluster = TRUE,
quickcluster_method = c("igraph", "hclust"),
BSPARAM = BiocSingular::IrlbaParam(),
BPPARAM = BiocParallel::SerialParam(),
...
)
sctransform_normalization(
sce,
vars_to_regress = NULL,
n_hvg = 3000L,
method = "glmGamPoi",
seed = 1L,
verbose = TRUE,
...
)
Arguments
- sce_cc
(input target) A
SingleCellExperiment
object.- norm_type
A character scalar: type of normalization.
- ...
Passed to
scran_normalization()
orsctransform_normalization()
.- sce
A
SingleCellExperiment
object.- use_quickcluster
A logical scalar: if
TRUE
, doscran::quickCluster()
prior to normalization.- quickcluster_method
A character scalar: clustering method:
"igraph"
uses graph-based clustering"hclust"
uses hierarchical clustering
See
?scran::quickCluster
for more details.- BSPARAM
A BiocSingular::BiocSingularParam object.
- BPPARAM
A BiocParallel::BiocParallelParam object.
- vars_to_regress
A list of character scalars: which variables to regress out during normalization. Passed to
Seurat::SCTransform()
.- n_hvg
An integer scalar: number of HVGs to take. Passed to
Seurat::SCTransform()
.- method
A character scalar: passed to
Seurat::SCTransform()
.- seed
An integer scalar: passed to
Seurat::SCTransform()
.- verbose
A logical scalar: passed to
Seurat::SCTransform()
.
Value
A SingleCellExperiment
object. normalization_type = norm_type
is appended to metadata()
of the returned
SingleCellExperiment
object. Output target: sce_norm
The following items are added to metadata()
of the returned SingleCellExperiment
object:
normalization_type
: value of thenorm_type
function argument.For
norm_type = "sctransform"
:sctransform_hvg_ids
,sctransform_pearson_residuals
,sctransform_vst.out
,sctransform_model_list
.
sctransform_normalization()
Seurat::SCTransform()
is returning counts in log1p (natural log)
scale, but these are transformed to log2.